EQUIVALENCE OF VISCOSITY AND WEAK SOLUTIONS FOR THE p(x)-LAPLACIAN

نویسندگان

  • PETRI JUUTINEN
  • TEEMU LUKKARI
  • MIKKO PARVIAINEN
چکیده

We consider different notions of solutions to the p(x)-Laplace equation − div(|Du(x)| Du(x)) = 0 with 1 < p(x) < ∞. We show by proving a comparison principle that viscosity supersolutions and p(x)-superharmonic functions of nonlinear potential theory coincide. This implies that weak and viscosity solutions are the same class of functions, and that viscosity solutions to Dirichlet problems are unique. As an application, we prove a Radó type removability theorem.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Weak and Viscosity Solutions of the Fractional Laplace Equation

Aim of this paper is to show that weak solutions of the following fractional Laplacian equation { (−∆)su = f in Ω u = g in Rn \ Ω are also continuous solutions (up to the boundary) of this problem in the viscosity sense. Here s ∈ (0, 1) is a fixed parameter, Ω is a bounded, open subset of Rn (n > 1) with C2-boundary, and (−∆)s is the fractional Laplacian operator, that may be defined as (−∆)u(x...

متن کامل

On the Equivalence of Viscosity Solutions and Weak Solutions for a Quasi-Linear Equation

We discuss and compare various notions of weak solution for the p-Laplace equation −div(|∇u|p−2∇u) = 0 and its parabolic counterpart ut − div(|∇u|p−2∇u) = 0. In addition to the usual Sobolev weak solutions based on integration by parts, we consider the p-superharmonic (or p-superparabolic) functions from nonlinear potential theory and the viscosity solutions based on generalized pointwise deriv...

متن کامل

رفتار سالیتونی در مدلهای ناپایدار باروکیلینیک

  Here we concern ouraelves with the derivation of a system of evolution equations for slowly varying amplitude of a baroclinic wave packet. The self-induced transparency, Sine-Gordon, and nonlinear Schrodinger equations, all of which possess soliton solutions, each arise for different inviscid limits. The presence of viscosity, however, alters the form of the evolution equations and changes th...

متن کامل

On Minimax and Idempotent Generalized Weak Solutions to the Hamilton–Jacobi Equation

This paper provides a direct equivalence proof for minimax solutions of A.I. Subbotin and generalized weak solutions in the sense of idempotent analysis. It is shown that the Hamilton-Jacobi equation Vt+H(t, x,DxV ) = 0 (with the Hamiltonian H(t, x, s) concave in s), considered in the context of minimax generalized solutions, is linear w.r.t. ⊕ = min and ̄ = +. This leads to a representation fo...

متن کامل

Mather Theory, Weak Kam, and Viscosity Solutions of Hamilton-jacobi Pde’s

We call the following three assumptions standard assumptions • H is convex in p, i.e. for all x ∈ T we have that the Hessian matrix ∂ pipjH(x, p) is positive definite for all p ∈ R. • H is superlinear in p, i.e. for all x ∈ T we have that lim H(x, p)/|p| → +∞ as |p| → +∞ • The flow defined by (1) is complete, i.e. for each initial condition (x0, p0) ∈ T × R solutions of (1) exists for all time....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010